
the broadest dissemination possi-
ble of information contained in
DOE’S Research and Development
Reports to business, industry, the
academic community, and federal,
state and local governments.

Although a small portion of this
report is not reproducible, it is
,being made available to expedite
the availability of information on the
research discussed herein.



LA4JR -ti’7-295d

LA-CR--87-2958

DE88 000511

TITLE. A GENERALTOPOLOGY,GODUNOVMETHOD

AuTHOR(S): Frank Addessio, Michael Cline, and John Dukowicz

SUOMITTEOTO Published Proceedings of the Los
Workshop on “Pnrticle Methods in
Physics,” held April 13-15, 1987

Alamos National Laboratory
Fluid Dynamics and Plusm8

DISCLAIMER

“Thinrepurt WM prcpurd M tit) uccounl O( work rnpunsurd hy tin ugcncy of the ~Jnllcd SliIles

(iovcrnmcnt Neither thc t Jni@rJ Stntcn (kwcrnntettt nor tiny }tgcncy thcroaf, nor uny of their

CIWPIOYCCK,mskcs tiny wurrHntyi caprcsn Or irnplid or n~umcs uny IC.SOIli~hi~i~y @ rc~~]nni”

twh!y fur the uccuruty, comptclcncsn, or udulness d my hrformrntion, #ppuralun, pr(xlud, or

pruce~ dinclord, or rcprcncntn (hut itn UNC wuuld not infringe privntcly vwnod rights Itcfer.

cnce herein 10 tiny siw~ifi[’ cl)mnlcrcial prt~ucf, Pr-*.W {Jr ~rv~~e by lrs~c nmme, trh~em~rk,

munufndurcr, or otherwise does not ncccmtirily conatilule m hnply its cndorscrncnt, rccom.

mcnd~tion, or fkvoring hy ~hc [ Inilcd $tutcrn {)ovcrnment or ~ny agency thereof “f’hb view~

d qdnionn of uuthurrn cxprcnad herein dII not ncccanadlyllnlc {jrrcflcclIhmc of the

(Initei Slates oo$cr?menl or tiny ~gency thcrouf

lh woolm co ot Nw wow m. PueIIOh.r MOOgmIOO mat m. u 8 Qovornm.nt towns c nonoaewolvo, royoIfy.tmo baonso10Duw.n of toproduco

mo oomn.d form of w COWIWIOITI or to wow others to do co, for us aowrrmm ouwoow

fho LOS Ammos Noho,w LMofohry qu..ta mot It!. BU911U!U td.no~ ilw Orrlalc M won gortotmu unaor m. ousowog of In. U S 0. OWIm.nt o~twgy

Losmums MASTER
LosAlamos NationalLaborator
LosAlamos,New Mexico 8754 i

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact: 



Library Without Walls Project 

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544 

Phone: (505)667-4448 

E-mail: lwwp@lanl.gov



A GltNI?RAl, TOl}O1.OGY, GOl)UNOV MIWHOI)

by

Frank Addessio, Michael Cline, and John Dukowicz
Theoretical Division, Group T-3
LOSAlamos .National Laboratory
Los Alamos, New Mexico 87545

AtfS’i’RAC’l’

A numerical teehnique that utilizes a general topology mesh is described. The

method employs the arbitrary Lagrangian-E ulerian procedure and explicit, finite-

volume, Godunov numerics. Material interfaces are resolved to elimi~ate fictitious mix-

ing and nonphysical shear impedance. Cell-centered variables, including velocity, are

used to provide consistent control volumes for the advection of mass, momentum, and

enerhy, and to allow arbitrary slip between material regions,

The computational mesh is composed of arbitrary polygonal cells. The constraint of

Q fixed logical connectivity fur the mesh is removed, Consequently, geometrical mesh

Iimitutions, which tire responsible for inaccuracies and code failure during the evolution

of region boundaries, nre nbsent. Arbitrary boundaries can be resolved, and the mesh is

mpnblc of changing smoothly ;~nd rnpidly from regions of high to low resolu~bn. Lack of

u coherent mesh orivntntion tniriirnizes numerical anisotropy, A mesh rezoning np -

prmwh, bnsed on o duul tritingulntion nrtd coupled with a glohut rernupping n]gorithrn,

allows the m(’sh to CVUIVCdynamically.

1, IN’I’I{OI)U(:’I’ION”
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continua remapping or advection of material properties, i,hnt is characteristic of an

Eulerian description, is inherently inaccurate, Concern for accurncy is augmented when

multiple materials are allowed to coexist within a computational cell. Because large

changes in physical properties and discwntinuities of dynamic variables are character

istic of material interfaces, their description in a mixed cell context requires either an

interface reconstruction or tra~’king scheme. Excessive numerical diffusion, additional

complication, and computational expense are incurred using this approach.

A purely Lagrangian formulation is cwnputationa]ly expeditious and accurate.

However, Lagrangian methods are fragile, Problems involving large material deforma-

tions produce excessively distorted computational meshes, resulting in the fnj lure of the

numerical algorithm. This difficulty is mitigated by applying a Lagrangian formulation

to the interfaces but allowing relative motion between the material and the computation-

al mesh on the interior, However, if the computational mesh is constructed with hgicallv

fixed--connectivity cells, the evolution of the mesh topology is prescribed by the motion of

the bouridaries, Consequently, the evolution of regions of lnrge boundary curvature may

produce cells wit!. Itirge uspect rtitius or small characteristic dimensions, which are in~lc-

curnte and impose severe time step constraints,

The utilization of arbitrnry pnlygonal cells that lack Iogicnl connectivity is explored

for solutions to mnterinl deformation problems, This approach offers the nbility to re

solve irregular computionol regions accurately and dyrtnmicnlly, A tw~l-dimcnsionnl

method using n finite-volume, Chdunov approach is described, ‘l’he rncth,)d, {!AVE.h’I’-

G’I’,is a general t[)polotiy extension to the fixed-u) nnectivity computer code CAVItA’I’ I I 1,

2. MESII (;lloM1’:’l’l{Y

‘1’hcc(m~putntit)nnl d~~m~linn~~)rielwlhy the CAVNA’I’.G’I’ alg(’rit,hm is (Iivi(iwl into

~l(jnovc’rllippir~g, cl(jsud rc~ions, l’;~il’tlregion, typi(’~llly, is uwj(}riohxl with u spcci!lc mi~t.c

riul, lloundi~ri~:s l~long whi(’h r(’gions intcruct nru refurrud to us il~tc’rftilws, Asso(’i/~t~’(1
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with each region is i~n underlying tri:]ngulation, which is used to construct the cornput.a

tional rells, define the mesh topology (connectivity), and describe the associated data

structure. ‘I’he computational cells define the control volumes used by the finite-volume

formulation of the governing equations. It is from these nonoverlapping, closed, arbi-

trarily shaped, polygonal cells that CAVEAT-CT derives its flexibility Irlterior

computational ceils are defined by vertices that are the centroids of the underlying

triangles (cf., Fig. 1). Therefore, there is a cell associated with each triangle vertex, Cells

lying adjacent h boundaries also are defined by cell vertices interior to a region. Along

the boundary, however, a point lying half way between the cell points is used to define

the extent of the boundary cell. Such points are referred to as cwundary points (cf., Fig,

1). Boundaries are constructed with linear segments defined by the cell points iying on

the boundaries. Boundary segments and points that lie on the interfaces separating

regions nru doubly defined.

In general, calculationnl quantities are associated with one of three locations on a

computational cell. Primary-extensive as well as the primary-intensive properties

derived from them, are associated with the cell centroids. ‘l’he solution of the Riemann

problem nnd rcmnpping also rvquire intensive quantities on cell sides, Finally, cell

vertex positions are stored,

“Fixed points” tire defined [Is special boundary cell-points, Boundary cell-points

located where thrue regions adjoin ure referred to as triple points, Tile intersection of n

line of symmetry iind “. region boundnry or two lines of symmetry ~~refixed symmetry

points. I“in[ilty, kinks or wrncrs in the boundary contour mny he defined I;S “fixed

points’” by the user, l)uring the c[]mputntion, sperinl consideration is provided to the

“fixed points’” nl~)rrg the boundary to ensure thnt the interfncw constr(lct;orl” l~lgt)rithn]

d(ws not sm(~(~tl]the c(~nt(}ur irl their vicinity, The Iocntions [If “flxd pt)ints” nre dctur

r~lincd prior b) :In(i rvmnin flxefi (iuring the interfnce construction.



3. MWI’HOI)OI.OGY

CAVEAT-CT is a two-dimension:il computer program written for either Cartesian

or cylindrical geometries. An arhitrnry I.ograngian-Eulerian (ALE) formulation is used

to advance the material state one full cycle. I)uring the Lagrangian step, the material

state is advanced by obtaining solutions to the conservation equations applied to volumes

following the material motion, Boundary and interface positions also are updated during

this p;lase. Following the Lagrangian phase, a new mesh is generated. This step is the

rezoning phase. Finally, in the remnpping step, the variables calculated in the

Lagrangian Fhase are transferred from their Lagrangian positions to the new mesh. In

CAVEAT-CT, there are two possible rezoneiremap algorithms, They include an efficient

“near-[,ngrangian” and a general global method, The global algorithms use the results of

the “near Lagrangian” methods ns their starting values. Details of the three phases are

provided herein,

3.1, I,agr=angian Phase

I)uring the Lagrangitin phiise of the computation, the rates of change of volume,

mnss, momeritum, and energy are updated for computational volumes following the ma

terial motion. In the finite-volume context, the equations of volume, mass, momentum,

and total energy change nre written

(/— I pfi\’ (1 ,
(// ~1

I

(1)
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and

(/— ! pt’: (lb’ -- - 1 l“1l’ .1} (1.s

(it
“1. ‘sl.

An equation of state is required to close this system of equations. Vi,(t) is a Lagrangian

control volume (i.e., a computational cell) with the surface S],(t) and moving at the local

material velocity. The unit normal vector directed outward from the surface is n. The

operator d/dt is the Lagrangian (material) time derivative, l’he quantities p, e, P, nnd u

tire the density, specific internal energy, pressure, and material velocity, respectively.

The specific total energy is E = e + ~ u Qu, An asterisk is used to deriate a cell-sided

qutintity,

Variab!es that specify the material state are stored at the centroids of the computa

tional cells, This allows modeling gross material slip without the need to include a logi -

cal slide line. The accuracy of the lnethod depends on the assumed spatial variation of a

representative intensive quantity $(x) about the eel] centroid xk

+(x) – (~l(xk) t Vkfl) ’(x - Xk) t f)(h? (2)

The computati~)nt-il procedure is considered “first-order” if till quantities are assumed

constant within a cornpututiuntil cell, that is, O(X) = @(xk). ‘l’he method is considered

“second-order” if the gradient VL@ exists, thnt is, a linear vnrintion for the varinble is

mwumed within n cell, The cnlculntio.n of the cell centered grndients (vk(~) includes

limiting to preserve monot.onicity” I I ],

llvnluut.i{)n of the’ right.. hnnd sides of Eq, ( 1) requires the pressure (l’*) iit}d thu

normill velocity (w+ ,= U* ~ n) on Lhe ct)ntrol surfncc, An extension of thu (ludur]ov meth



od, which selves a local Riemann problem at the cell surface, is used. The left and right

states required by the Riemann solver are obtained from the cell-centroid quantities

using Eq. (2). An approximate Riemann solver [3] is used in CAVEAT-CT.

Solutions to the Riemann problem provide normal material velocities, W* =

(u* s n)n, on the cell sides. ‘i’here is one Rietnann l~elocity on each interior side and two

associated with the straight line segments located along the region boundaries. These

velocities are positioned mid-way between the cell point and the boundary point. Con-

sequently, a linear distribution of the normal velocity is implied for each boundary seg-

ment. The two boundary-segment velocities are used to construct wavefronts with radius

w* At, according to Huygens construction. The new boundary-segment position is speci-

fied by the points that lie on the tangent to the two wavefronts.

The Huygens construction is used to advance the two boundary segments that inter-

sect at a “fixed point”. The new “fixed point” position is the intersection of the advanced

positions of the neighboring segments. ‘The construction resu lta in three potential posi-

tions for triple points. This ambiguity is resolved by linearly combining the three posi-

tions usinga density weighting.

Similarly, the new boundary-cell points could be determined by the intersections of

the new boundary segments. ‘1’hese intersections are not defined, however, when the seg-

ments are parallel or collinear, The solution to this dilemma is facilitated if the problem

is posed in a variational form

(3)

where the sums nre taken over bounci~~ry-cc]l points and sides, respectively, In 13q. (3),

d,,l,h is the distance from the boundnry points (xk) to the line segment tn. The first term

deflncs N vuriution:~l problem for thv intersection of two h)undnry segmnts. A vnriu



7

tional formulation including only this term is singuiar for parallel or collinear boundary

segments. Consequently, the second term in Eq. (3) is included to regularize the

variational problem. The function Ok is chosen to decrease the contribution of the first

functional as the boundary segments approach parallelism. The weight ~nl is

constructed to equidistribute a “one-dimensional” mass distribution along parallel or

collinear bounu~ries. The variation of this functional provides a system of equations for

the cell-point positions (xk),

3.2. Rezone Phase

During the rezoning phase of the CAVEAT-CT algorithm, the location of the new

mesh is determined. The positions of the boundary-cell points are determined first.

Then, the boundary point locations are used as boundary conditions for the algorithm

that provides the positions of the interior vertices. B6th a “near-Lagrangian” and a

global rezone method are available for determining the boundary and interior locations.

Advancement of the interfaces and boundaries that enclose each region is accom-

plished by the interface construction technique (cf., Sec. 3.1), This construction uses the

velocities normal to the boundary segments to position the new boundary, Location of

the boundary-cell points tangentially along the boundtiry segments is arbitrary, Place-

ment of the boundary points along the segments that are obtained from the interface

construction is performed by the boundary rezone algorithm. The “near-Lagrangian”

placement locates the boundary points to preserve the original mass distribution along

the boundary segments, The nssuciated advection across cell sides that intersect the

boundary is minimized,

The general topology mesh offers the ability to add computational cells in regions

demanding finer resolution and eliminating cells where they no longer are required

along the boundary. This is accomplished by calculating a point distribution parameter

N frmn the ordinnry dit?erer?tin] 6?qU&lti(Jn
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z
= /(!s,K,v(p, ..)

8

(4)

The point-distribution density function (0 is chosen ‘todistribute boundary points equally

along the interfaces in the absence of any distinguishing features. Otherwise, boundary

poifits are forced to migrate into regions with large values of the boundary curvature (K)

or the gradient (V$) of a prescribed variable, such as pressure. Equation (4) is integrated

along boundary contours between “fixed points. “ The resulting vaIues for N(s) are scaled

to ensure that the final value for N(s = L) is an integer, That is, the positions of the

“fixed points” are not altered. The boundary points then are placed along the boundary

contour at positions where N(s) has integer values, Solutions for N(s) are obtained every

time-step. The solution is tested to determine if the existing boundary-point distribution

sufficiently resolves the boundary contour, If boundary point addition or deietion or

gross vertex migration is unnecessary, the boundary-point positions resulting from the

“near-Lagrangian” description are used, However, if the %ear-Lagrangian” positions

are not adequate to resolve accurately the boundary contour, then the final positions of

the boundary points are specified by 13q.(4) and a global ~ezone of the interior mesh also

is required.

The interior rezone algorithms construct a mesh on the interior of each region, The

inter~or mesh construction schemes require the boundary-point positions, obtained from

the boundary rezone computation, as boundary conditions. Both of the interior-rezone

algorithms manipulate the triangulation, rather than the computational mesh. If the

Lagrangian cell vertex positions were available, remapping the variables obtained from

the Lagrangian phase of the calculation would be unnecessary. Unfortunately, it is

possible to collapse small cell sides without substantially affecting the cell volume with a

purely Lagrangian description. The “near-I, agrangian” rezone ripproach attempts to

preserve the cell volumes produced by !.he material motion and maintain a smooth mesh.
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The “near-Lagrangian “ mes4 velocities (u,,, ) are obtained from tile solution to the

equation

Vyu ,,, = 1/1) di’l(lt , (5)

where v is the specific Lagrangian volume. This formulation preserves Lagrangian

volumes.

If the computational mesh becomes sufficiently distorted, then a global-rezone

method is employed to produce a smooth mesh. A global rezone is invoked if solutions to

Eq. (5) produce triangles with ilegative areas or if an interior triangle contains an angle

less than 10 degrees. A global rezone also is performed when points are added or deleted

along the boundary, or there is gross boundary point migration. Similar to established

rezoning techniques [4], a variational formulation using a composite functional, which

will produce desirable mesh characteristics, is used. The functional incorporated into the

CAVEAT-GT method is

I ~ 1’ (df2t ({,, t d~,),,i,I,,+-[1 \’ (i2 (6)rtt ‘
n rll

where the sums are taken over traingles and cell sides, respectively, The first term in Eq.

(C) provides a measure of the smoothness of the computational mesh. An is the triangle

qrea and di,iis the length of the triangle side. A variational formulation composed oniy of

this first term attempts to produce equilateral triangles. However, the triangle areas

could be grossly disparate, The second term in Eq, (6) is included to mitigate this difficul-

ty, This functional is minimized when the lengths of the trinngle sides (dll)) are equal,

Changes in the connectivity of the mesh are allowed during the iterative procedure used

to minimize Eq. (6). Point addition or deletion on the mesh interior is precluded.
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3.3. Remap Phase

Although the normal motion of the region boundaries is Lagrangian, the mesh mo-

tion tangent to the boundaries and on the interior differ from the material motion. Con-

sequently, it is necessary to remap the results of the I.agrangian phase onto the mesh

positions dictated by the rezoning algorithms. Remapping procedures introduce a diiFu-

sion error into the results. This error is reduced by increasing the order of accuracy of the

approach or reducing the relative difference between the material and mesh velocities.

If the difference between the material and mesh velocities is sufficiently small to

preclude violating the stability of the numerical technique, then the variables may be

advected to the new mesh. Advection, therefore, is appropriate when remapping to the

mesh generated by the “near-Lagrangian” rezoning technique. In the event that an

entirely new mesh is generated, a global remap of the material variables is required.

Because the variables are remapped from the “near-Lagrangian” positions to the new

mesh, a global rezone/remap always is preceded by a “near-Lagrt ngian” rezone and

advection. The global remap contained in CAVEAT-GT is an extension of previously

developed methods for quadrilaterals [5]-[8] to the geometry of a general topology mesh.

A conservative transfer of the variables between two meshes is obtained, There is no

restriction on either the mesh topology or the time-step size.

4. KXAMP1.tt PfiOtl14EMS

Two test problems are presented to demonstrate the features of the general topology

formulation. A dimensionless set of units is used in the problem descriptions.

4.1. Blast Wave

The blast wave problem is coinposed of one region with seven fixed boundaries (i.e.,

reflective boundary conditions) and 593 computational cells. The characteristic cell

dimension is approximately 0.08. Initially, the velocity, pressure, density, and specific

internal energy are 0, 1 x 10 Ii}, 1, and 1.5 X 10 lo, respectively. At t = (), a source of
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energy is applied to the cell located at x = y = 0.95, This computational cell is assigned

the values of 20/3, 1, and 10 for the pressure, density, and specific internal energy,

respectively, A gamma-law gas equation-of-state with y = 5/3 is used.

As the calculation evolves, a wave emanates from the energy source, The “near-

Lagrangian” rezone algorithm concentrates cells in the vicinity of the wave, As cells are

compressed in the neighborhood of the wave, distorted triangles are generated. When

this occurs, a global rezone is ~erformed and a more regular mesh is generated. Mesh

geometries preceding and following a global rezone are provided in Fig, 2, It is observed,

that although a smoother mesh is produced, a region of smaller cells remains in the vicin-

ity of the wave. Pressure profiles preceding and following a global remap also are pro-

vided in Fig. 3 for a first-order calculation. The diffusion produced by the remapping is

evident.

4,2. Impact Problem-.

Consider a thin plate with dimensions 0,4 by 2,0, density oi’8,9, and traveling at the

uniform velocity of-0,196 in the vertical direction, At t = O the plate encounters a rigid

wall. The itnpact problem is modeled using the general topology method and a fixed-

connectivity mesh with the identical Godunov numerics for comparison. Both meshes

use computational cells with a characteristic dimension of 0.1, The left and bottom

boundaries are reflective, The right nnd top boundaries are n free surface (P = O) and a

specified velocity boundary (v = -(),196), respectively, A Chaplygin equation-of-state is

used

,J..,,:!( :-:),

8’1)

(7)

where k = 3,49 nnd p,, = 8,9,
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The mesh evolution for a second-order, van Leer limited calculation using the

general-topology mesh is shown in Fig. 4. ‘l?he ability of the techniquti to smoothly add

and delete computational cells along the boundaries is evident. For comparison, the late

time mesh for a secend-order, van Leer limited, fixed-con~ectivity computation also is

provided in Fig. 5. The fixed-connectivity cnlcu]ation also utilized a mesh rezoning

technique in an effort to maintain a regular mesh in the interior. The accuracy of this

latter calculation is suspect at later times as eel! aspect ratios become excessive. Both

calculations are explicit. Consequently, as the characteristic dimension of the mesh

decreases for the fixed-co.~nectivity analysis, the time-step size decreases. ,At t = 7,5, the

time-step sizes are 2.4 X 10~ and 3,8 X IO-3 for the genera l-topclogy and fixed-

connectivity methods, respectively.

A steady-state, analytic solutlon is available for the impact problem [9], To simu-

late steady-state conditions, late time solutions for a plate with a width-to-height rntio of

0,5:7,5 are obtained. Initially, the plnte is in uniform motion with values of-i, nnd 1, for

the vertical velocity and density, respectively. The left and bottom boundaries are reflec

tive. The right boundury is a free surfiice and the top boundary is Q specified velocity

boundary with v = -1.0, The initial mesh is composed of 512 computational cells with n

characteristic dimension of 0.1, A Chnplygin equation-of-state [cf., Eq, (7)] is used with k

= 3.49 and p,, = l, O,The results for n Inte time, second-order, van Leer limited

calculation is provided in Fig, 6.

5* CONCI,USIONS

A two-dit~)ensiot~;~l,” geneml topology, Gudunuv method hus been cleveloped, ‘1’l~c

use of general polygonal cells facilitates the dynnmic resolution of prot>lems inv[]lving

Inrge tnnterinl deformations. ‘1’be formulation uses n I,ugrunginn dcsl’ripti(]n for

tnuteriu] bound nrics. Consequently, un uccurute boundnry unulysis thnt climinntes

fiCtiti(JUS shcnr impedunce nnd intcr~~’:~teriu] penetration results.
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~utureextensions of thenurnerical method are envisioned. ‘1’he ability to add or

delete con~putationt]l uellson the int.eriorilnd the inclusion of a more general setof

boundar;’ conditions is planned, Fin~illy, bec*nuse theexisting code isusedforanexperi

mental investigation, no attempt has been n;~~de to develop i~ fiist version, nli,hough

optimizing [lnd vecturizingof the coding is possible.
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FIGURE CAPTIONS

Fig. 1,

Fig. 2.

f+’ig.3,

Fig. 4,

Fig, 5,

h’ig, 6,

Mesh Geometry (--- triangulatiorl, — cell, o cell point, LIcell vertex, A boundary

point).

Mesh Gewnetry (a) Preceding and (b) Following a Global Rezone for the Blast

Wave Problem.

Pressure Profiles (a) Preceding and (b) Following a Global Rezone for the Blast

Wave Problem.

Mesh Evolution of the Impt.ct Problem for the General Topology Method at

(u) t = 2.Oand (b) t = 7.5,

Mesh Geometry of the Impact Problem for the Fixed-Connectivity Method at

t = 7,5,

C(!mpnrison of the (n) I)ensity iltld (b) Velocity for the Steady-State, Impact

I)rohlcrn along the Impact Plnne (-- analytic and o computational result).
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